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Ising model review
Bootstrap of the Ising model

1. Relation: “spin-flip” equations

2. . reflection positivity, Griffiths inequalities, etc.
Results in 2D and 3D Ising model

Prospects
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Ising Model

Physical system for intuition: magnets
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Partition function:

1 spin
Z=Y exp [—?E (Conﬁg)]
spin

configs

where the exponential is interpreted as the probability
that the system is in that specific spin config

At each lattice site x € A, the variable s,
(called “spin”) can take either of two values
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A spin configuration of the lattice system is a
particular assignment of a spin value for each
Site.
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Ising Model

Physical system for intuition: magnets

For the Ising model,

: E({s.}) = —JZ sxsy—hZSx
borp (xy) xXEA
! where (xy) means x, y € A such that they are directly adjacent sites

» 2nd term — external magnetic field /:

spins want to point in the same direction as the external magnetic field
(energetically favorable to do so)

e 1st term — nearest-neighbor interactions only:
it’'s energetically favorable for a spin to point along the same direction

as its neighbor. J is the strength of this interaction.
J > 0 ferromagnetic; J < 0 anti-ferromagnetic



Ising Model

Physical system for intuition: magnets

Ising:

7 — Z 8J2<xy>sxsy+ h), s,

s.==*x1

S XEA

For a function f({s, }) of the spins,

<f({Sx})> — % 2 f({sx})eJZ(xy)SxSy-l-hszx,

denotes the average value of /.
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Ising Model — phase transition

Isingat h = 0
A |
P
VTl |
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Spontaneous magnetization
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Diagnosis: Jc
average magnetization o
per site <S()>h=()+ = 0 <S0>h:0+ # 0

(order parameter)



Ising Model — phase diagram

2D Ising
h

o Soh=0r >0
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Ising Model — phase diagram

2D Ising
h

Soln=0+ >0

( ]c <S0>h=0_ <0

Conformal bootstrap
See talks by [Poland] [van Rees]
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- Exactly soluble
- No phase transition

e 2D (50)
- Exactly soluble for 4 = 0 only
- Exhibits a phase transition!

e 3D
- No exact solution known today
- EXxhibits a phase transition as well
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Ising Model — summary

e 1D Bootstrap:
- Exactly soluble

No phase transition “put a bound on our ignorance”

e 2D So
- Exactly soluble for 4 = 0 only LT
- Exhibits a phase transition! S

° 3D ________ g I.':
- No exact solution known today J

- EXxhibits a phase transition as well



Ising model
lattice bootstrap




Lattice Bootstrap — Ising Model

to be bootstrapped: spin correlation functions

<§A> =% 2 S, € JZ( y>SS+hZ Sa Sy = HSxa

s=x1, xeA XEA

Examples:
° <SOS€1>

. <5052e1>
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1. Relation: spin-flip equations (from a change of variable)

5, = — 45,

Sounds trivial, but

exp —2Js Z(Z+e Ze)—2hs + Js Z(Z+e eﬂ)+hsz]



Lattice Bootstrap — Ising Model

1. Relation: spin-flip equations (from a change of variable)

5, = — 45,

Sounds trivial, but
<‘—9A> — CA(Z)<6XP —2Js Z (s Szte, T Oz— eﬂ) — 2h SZ] >

-1, if z€A . ..
Ca(2) = { I otherwise =we {0,x2,---,£d} finitely many terms



Lattice Bootstrap — Ising Model

1. Relation: spin-flip equations

2d
0 = [~£,4(0) + cosh@@)|(s,) + ) [A, cosh(2h) + B, sinh(2h)| (s ,w*)
=0

2d
—sinh(2h)(s,50) — ) [A,sinh(2h) + B, cosh(2)] (s, sw")
=0

where A, and B, are some fixed coefficients (sinh(J)’s and cosh(J)’s)

* Linear equations

 Equations between variables in a small region
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1. Relation: spin-flip equations, examples in 2D h=0 .
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Lattice Bootstrap — Ising Model

1. Relation: spin-flip equations, examples in 2D h=0
Spin correlators in the “131” diamond:

X; = <S0S€1>, Xy = <S€1S_el>’ Xy = <S€1S82 , Xy = <Se15—e15e25—e2>» X5 = (SOSeIS_61S62>

131 diamond

Spin-flip equations relates spin correlators:
(total of 6 spin-flip egs for 131, not all independent)

0 =A, (4+4x, + 8x3) + Ay (40 + 64x, + 128x; + 24x,) — 4Bx; — B; (40x; + 24x;)

Correlators x, and x5 are not independent:

B —8(cosh(2J) + cosh(6J))x; + sinh(2J)(—1 + 2x, + 4x;) + sinh(6J)(3 + 2x, + 4x;)

4= 4 sinh3(2))
B —(1 + 3 cosh(4J))x; + sinh(4J)(1 + x, + 2x;)

Xe =
> 2 sinh2(2J)




Lattice Bootstrap — Ising Model

1. Relation: spin-flip equations
 Linear equations

 Equations between variables in a small subregion

131 diamond 13531 diamond

15551 domain



Lattice Bootstrap — Ising Model

1. Relation: spin-flip equations

primite subsets ind. spin-flip equations Iind. spin correlators

2D 131, h=0 6 2 3

2D 13531, h=0 569 549 19
2D 13531, h=0 1127 1097 29
3D 15551, h=0 5214 4584 629

* Solve numerically
 Not the bottleneck of the computation



Lattice Bootstrap — Ising Model

2. . several kinds
» Reflection positivity
e Square positivity (appears to be redundant)

o Griffiths inequalities



Lattice Bootstrap — Ising Model

2. Reflection

R _ A R _ A
(0" 0) >0, where @—ZtgA, 0, _Zth(A)
ACH ACH

The three inequivalent reflection planes:



Lattice Bootstrap — Ising Model

2. Reflection
R A R _ A
(0" 0) >0, where @=Zt§A, 0, _Zth(A)
ACH ACH
The three inequivalent reflection planes:
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Lattice Bootstrap — Ising Model

2. Reflection

R _ A R _ A
(0" 0) >0, where @—ZtgA, 0, _Zth(A)
ACH ACH

Equivalently, 7' M7 > 0 with My, := (Sgaysa) € M >0
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Lattice Bootstrap — Ising Model

2. Reflection , example 131 diamond
| 505e, + SpS_ e, SeSe, + SeS—e, |
even : 1, 5p8,, So.5_.; > : > , S0Se,Se,S—e);
i S0Se, — S05—e, | SeSe, — SeS_e,
2 2

Invariant SDP: sufficient to impose positive semidefiniteness of matrices
built from states that transform in each irrep of the symmetry group.



Lattice Bootstrap — Ising Model

2. Reflection , example
+ +

1 X X X X; Xs

X X Xs X; Xs Xy

X Xs 1 X X; X
1 + x2 xl ~+ x5 z O

X| + X;5 Xy T+ Xy
+ X3 .XS X3 > > XS



Lattice Bootstrap — Ising Model

2. Reflection , example
+ +
1 X X X X; Xs
X Xs 1 X X; X
1 +x, X1+ =0
x1+x5 X2+X4
+ X3 'XS X3 > > .xs



Lattice Bootstrap — Ising Model

2. Griffith’s inequalities ( ) [Glimm-Jaffe]

(8,85) =S )8 20 (G

for finite subsets A, B C A.



Lattice Bootstrap — Ising Model

2. Griffith’s inequalities ( ) [Glimm-Jaffe]
(8,85) — ()85 20 (Gy)
for finite subsets A, B C A.

 True for ferromagnetic coupling J > 0.

. G, implies (gA) are monotonic as functions of J or A.

(5, are non-linear inequalities. Many of them are non-convex.

Thus far, we have not been able to implement them in SDP in a useful way. More on this
later.




Lattice Bootstrap — Ising Model

SDP problem:

e Reflection matrices, one for each
irrep of symmetry group:

XO =% 0¥y (s,) = 0. Vk

* Plug-in numerical solution of spin-flip
equations (s,) = ZI af‘(gl) + ¢4, where

(s,) are the independent variables, and so
(k) — (k) (k)

k) _ Iy k) — k
where W' =% a; Y0, Vv =3 ¢,¥¥



Lattice Bootstrap — Ising Model

SDP problem:
* Reflection matrices, one for each min Z bly,
irrep of symmetry group: yER =
X©W=73% _Ys,) >0, Vk subjectto Y aly,+¢, >0, VA
I
» Plug-in numerical solution of spin-flip and Z WOy, + Vv =0, Vi
I

equations (s,) = ZI af‘(gl) + ¢4, where

(s,) are the independent variables, and so

(k) — 21 Wl(k)<—sl> 4 y® > 0. Vk Solve using MOSEK or SDPA-QD.

k) _ Iy k) — k
where W' =% a; Y0, Vv =3 ¢,¥¥



Lattice Bootstrap — Ising Model

Some numbers:

2D 13531 diamond hz0 3D 15551 domain h=0
e 29 Independent variables e 629 iIndependent variables
e 8 positive semidefinite matrices 17 positive semidefinite matrices

(288°,2247,12°.4%,144%,112%,20%,12%) Largest matrix: 2400 x 2400

* Too big for SDP solver. Had to
truncate matrices to 100 x 100



Lattice Bootstrap — Ising Model

Some numbers:

2D 13531 diamond hz0 3D 15551 domain h=0
e 29 Independent variables e 629 iIndependent variables
e 8 positive semidefinite matrices 17 positive semidefinite matrices

(288°,2247,12°.4%,144%,112%,20%,12%) Largest matrix: 2400 x 2400

* Too big for SDP solver. Had to
truncate matrices to 100 x 100

| arge scale separation in positive-semidefinite matrices ~ 10!

» Effectively lose 10 digits of accuracy

 SDPA-QD for most precise results, and MOSEK for when < 6 digits is
enough (which is a much faster SDP solver).



Results



2D Ising, h=0

<SO Sey
1.0 -

0.8 -
0.6 -
04 -

0.2 -

- J

\ ! ! ! \ L ! ! \ ! ! ! \
0.2 0.4 0.6 0.8

 Dramatic improvement by increasing size of diamond!

data shown for:

131 diamond

13531 diamond

—_ analytical result



2D Ising, spontaneous magnetization

(So)

x 13531+G;4
131+G1

0] ® o) 13531
0] o) 131

* Only upper bound
e 1st Griffiths inequality plays a role, but appears to be not essential



2D Ising, h#0

A (SO Se1 )

13531 diamond bootstrap



A(soSe;) atd =J,

0.01- ¢ e upper boostrap bound - lower bootstrap bound
e 10° sweeps MC error (est. with 1 sigma)
1074 "
1070 - o
1078 - "\
] 10710 - .
0.2 0.3 0.4 0.5 0.6 0.7 0.8 . .
1012 - e .
e exact - lower bound )
i ‘ ‘ ‘ \ ‘ ‘ ‘ \ ‘ ‘ ‘ \ ‘ ‘ ‘ \ ‘ ‘ h
e upper bound - exact 02 04 06 08

10* sweeps MC error (est. with 1 sigma
Weep ( ! gma) * 13531 diamond bootstrap

o 10° sweeps MC error (est. with 1 sigma) « MC on a 200 x 200 lattice, 10° Metropolis sweeps
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2D Ising, Griffiths 2nd inequality

(So) (So Sey)
0-5®®®®®®XXXXX : Q)(&@&XX
’ X 0.8 g 2
X f X X X
® XX x X XXX
i I X
\\\\\\\\\\\\\\\\\ B Ol O OO O OO DO 0.6
02 0.3 0.4 0.5 0.6 0.7 3 O f X o 131+Gj
- R 131+G;
04 X x 131
05
0.2
* X X *
10 - XXXXXXX “\““\‘“‘\““\““\““\““\“J
0.2 0.3 0.4 0.5 0.6 0.7 0.8

» Orange circles: 2nd Griffiths inequality G, is violated ~ when bound looks
non-monotonic.



G, inequalities

<§A§B> o <_SA><_SB> > ()

 Some can be phrased as positive-semidefinite matrix:
Namely, those with B = A% for some g € G of the symmetry group G, so that

<_SA§Ag> o <§A>2 > O’ Or
L (sy)
0
(@A) <§A§Ag>> .

But do not appear to improve bounds.

 Not others, for example in the 2D 131 diamond

<S—€2SOS€2S€1> T <SOS€1><S—€2S€2> > O’ <S€2> o <S_61S61S62><S_61S81> > 0 etc.
Some are violated! So we do expect to improve our bounds.

e A naive relaxation did not improve bounds (didn’t try too hard...)



3D Ising, h=0 T

P —
<80891>
® ©
1.0 L i s eess e O
| . |
. ©
0.8 ..
0.6 y
151 diamond
d ,‘ 1551 diamond
0.4
%] e * 15551 diamond,
| o0 4° with reflection positivity matrices
02 - truncated to 100 x 100
«  MC on 100 lattice
o1 02 03 04 05 06’



Future Directions

Improve the algorithm

- Subset of spin configurations that are more important
- Null state relations

More inequalities

- Incorporate G, inequalities (non-convex)
- Simon-Lieb inequalities - long-distance spin correlators

(505,) < ) (5,5.)(s.5,)

ZEB o ®
- Aizenman-Lebowitz inequality

- More!



Future Directions

Theories with fermions

Incorporate RG block-spin transformations (criticality)
Systematic understanding of the convergence of bounds
Gauge theories (see [Kruczenski talk] [Kazakov-Zheng] for pure YM)
Study lattice defects

Combine with the conformal bootstrap






2D Ising, h=0

(SO Se1>

<SO SZ €1 >

1.0 -
0.8 -
0.6 -
04 -
0.2 -



