Bootstrapping the Ising Model on the Lattice

Victor A. Rodriguez
Princeton University

Positivity @ PCTS

Minjae Cho

Barak Gabai

Ying-Hsuan Lin

Joshua Sandor

Xi Yin

Outline

- Ising model review
- Bootstrap of the Ising model
 - 1. Relation: "spin-flip" equations
 - 2. Positivity: reflection positivity, Griffiths inequalities, etc.
- Results in 2D and 3D Ising model
- Prospects

Physical system for intuition: magnets

At each lattice site $x \in \Lambda$, the variable s_x (called "spin") can take either of two values

$$s_{x} = \begin{cases} 1 & \text{"spin up"} & \uparrow \\ -1 & \text{"spin down"} & \downarrow \end{cases}$$

electrons, tiny magnets

Physical system for intuition: magnets

At each lattice site $x \in \Lambda$, the variable s_x (called "spin") can take either of two values

$$s_{x} = \begin{cases} 1 & \text{"spin up"} & \uparrow \\ -1 & \text{"spin down"} & \downarrow \end{cases}$$

electrons, tiny magnets

A spin configuration of the lattice system is a particular assignment of a spin value for each site.

Physical system for intuition: magnets

At each lattice site $x \in \Lambda$, the variable s_x (called "spin") can take either of two values

$$s_{x} = \begin{cases} 1 & \text{"spin up"} & \uparrow \\ -1 & \text{"spin down"} & \downarrow \end{cases}$$

electrons, tiny magnets

A spin configuration of the lattice system is a particular assignment of a spin value for each site.

Physical system for intuition: magnets

Partition function:

$$Z = \sum_{\text{spin}} \exp \left[-\frac{1}{T} E \begin{pmatrix} \text{spin} \\ \text{config} \end{pmatrix} \right]$$

where the exponential is interpreted as the probability that the system is in that specific spin config At each lattice site $x \in \Lambda$, the variable s_x (called "spin") can take either of two values

$$s_{x} = \begin{cases} 1 & \text{"spin up"} & \uparrow \\ -1 & \text{"spin down"} & \downarrow \end{cases}$$

electrons, tiny magnets

A spin configuration of the lattice system is a particular assignment of a spin value for each site.

Physical system for intuition: magnets

For the Ising model, $E(\{s_x\}) = -J\sum_{\langle xy\rangle} s_x s_y - h\sum_{x\in\Lambda} s_x$

where $\langle xy \rangle$ means $x,y \in \Lambda$ such that they are directly adjacent sites

Physical system for intuition: magnets

For the Ising model,

$$E(\lbrace s_x \rbrace) = -J \sum_{\langle xy \rangle} s_x s_y - h \sum_{x \in \Lambda} s_x$$

where $\langle xy \rangle$ means $x, y \in \Lambda$ such that they are directly adjacent sites

 2nd term — external magnetic field h: spins want to point in the same direction as the external magnetic field (energetically favorable to do so)

Physical system for intuition: magnets

For the Ising model,

$$E(\lbrace s_{x}\rbrace) = -J\sum_{\langle xy\rangle} s_{x}s_{y} - h\sum_{x\in\Lambda} s_{x}$$

where $\langle xy \rangle$ means $x,y \in \Lambda$ such that they are directly adjacent sites

- 2nd term external magnetic field h: spins want to point in the same direction as the external magnetic field (energetically favorable to do so)
- 1st term nearest-neighbor interactions only: it's energetically favorable for a spin to point along the same direction as its neighbor. J is the strength of this interaction.

J>0 ferromagnetic; J<0 anti-ferromagnetic

Physical system for intuition: magnets

Ising:

$$Z = \sum_{s_x = \pm 1} e^{J\sum_{\langle xy\rangle} s_x s_y + h\sum_x s_x}$$
$$s_x = \pm 1$$
$$x \in \Lambda$$

(temperature T has been absorbed into J and h)

For a function $f(\{s_x\})$ of the spins,

$$\langle f(\lbrace s_{x}\rbrace)\rangle = \frac{1}{Z} \sum_{s_{x}=\pm 1} f(\lbrace s_{x}\rbrace) e^{J\sum_{\langle xy\rangle} s_{x}s_{y} + h\sum_{x} s_{x}},$$

$$x \in \Lambda$$

denotes the average value of f.

Ising Model — phase transition

```
Ising at h = 0
```


 J_c

Ising Model — phase transition

Ising at h = 0

Spontaneous magnetization

Ising Model — phase transition

Ising at h = 0

Spontaneous magnetization

Diagnosis: average magnetization per site (order parameter)

$$\langle s_0 \rangle_{h=0^+} = 0$$

$$\langle s_0 \rangle_{h=0^+} \neq 0$$

Ising Model — phase diagram

 $\begin{array}{c|c} h \\ \hline \\ \hline \\ J_c \end{array} \qquad \begin{array}{c} \langle s_0 \rangle_{h=0^+} > 0 \\ \hline \\ J_c \end{array} \qquad \begin{array}{c} \langle s_0 \rangle_{h=0^-} < 0 \end{array}$

Ising Model — phase diagram

- 1D
 - Exactly soluble
 - No phase transition
- 2D
 - Exactly soluble for h = 0 only
 - Exhibits a phase transition!
- 3D
 - No exact solution known today
 - Exhibits a phase transition as well

- 1D
 - Exactly soluble
 - No phase transition
- 2D
 - Exactly soluble for h = 0 only
 - Exhibits a phase transition!
- 3D
 - No exact solution known today
 - Exhibits a phase transition as well

Bootstrap:

- 1D
 - Exactly soluble
 - No phase transition
- 2D
 - Exactly soluble for h = 0 only
 - Exhibits a phase transition!
- 3D
 - No exact solution known today
 - Exhibits a phase transition as well

Bootstrap:

"put a bound on our ignorance"

- 1D
 - Exactly soluble
 - No phase transition
- 2D
 - Exactly soluble for h = 0 only
 - Exhibits a phase transition!
- 3D
 - No exact solution known today
 - Exhibits a phase transition as well

Bootstrap:

"put a bound on our ignorance"

Ising model lattice bootstrap

Objects to be bootstrapped: spin correlation functions

$$\langle \underline{s}_A \rangle = \frac{1}{Z} \sum_{\substack{s_x = \pm 1, \ x \in \Lambda}} \underline{s}_A e^{J \sum_{\langle xy \rangle} s_x s_y + h \sum_x s_x}, \qquad \underline{s}_A \equiv \prod_{x \in A} s_x,$$

Examples:

•
$$\langle s_0 s_{2e_1} \rangle$$

1. Relation: spin-flip equations (from a change of variable)

$$S_z \rightarrow -S_z$$

Sounds trivial, but

1. Relation: spin-flip equations (from a change of variable)

$$S_z \rightarrow -S_z$$

Sounds trivial, but

$$\exp\left[-2J s_z \sum_{\mu=1}^{d} (s_{z+e_{\mu}} + s_{z-e_{\mu}}) - 2h s_z + J s_z \sum_{\mu=1}^{d} (s_{z+e_{\mu}} + s_{z-e_{\mu}}) + h s_z\right]$$

1. Relation: spin-flip equations (from a change of variable)

$$S_z \rightarrow -S_z$$

Sounds trivial, but

$$\langle \underline{s}_A \rangle = \zeta_A(z) \langle \exp \left[-2J \, s_z \sum_{\mu=1}^d \left(s_{z+e_\mu} + s_{z-e_\mu} \right) - 2h \, s_z \right] \rangle$$

$$\downarrow \qquad \qquad \downarrow$$

$$\zeta_{A}(z) = \begin{cases} -1, & \text{if } z \in A \\ 1, & \text{otherwise} \end{cases} \qquad := w \in \{0, \pm 2, \cdots, \pm d\} \quad \text{finitely many terms}$$

1. Relation: spin-flip equations ($s_z = s_0$ here)

$$0 = \left[-\zeta_A(0) + \cosh(2h) \right] \langle \underline{s}_A \rangle + \sum_{\ell=0}^{2d} \left[A_{\ell} \cosh(2h) + B_{\ell} \sinh(2h) \right] \langle \underline{s}_A w^{\ell} \rangle$$
$$-\sinh(2h) \langle \underline{s}_A s_0 \rangle - \sum_{\ell=0}^{2d} \left[A_{\ell} \sinh(2h) + B_{\ell} \cosh(2h) \right] \langle \underline{s}_A s_0 w^{\ell} \rangle$$

where A_l and B_l are some fixed coefficients ($\sinh(J)$'s and $\cosh(J)$'s)

- Linear equations
- Equations between variables in a small region

1. Relation: spin-flip equations, examples in 2D h=0 Spin correlators in the "131" diamond:

1. Relation: spin-flip equations, examples in 2D h=0

Spin correlators in the "131" diamond:

$$x_1 = \langle s_0 s_{e_1} \rangle, \quad x_2 = \langle s_{e_1} s_{-e_1} \rangle, \quad x_3 = \langle s_{e_1} s_{e_2} \rangle, \quad x_4 = \langle s_{e_1} s_{-e_1} s_{e_2} s_{-e_2} \rangle, \quad x_5 = \langle s_0 s_{e_1} s_{-e_1} s_{e_2} \rangle$$

1. Relation: spin-flip equations, examples in 2D h=0

Spin correlators in the "131" diamond:

$$x_1 = \langle s_0 s_{e_1} \rangle, \quad x_2 = \langle s_{e_1} s_{-e_1} \rangle, \quad x_3 = \langle s_{e_1} s_{e_2} \rangle, \quad x_4 = \langle s_{e_1} s_{-e_1} s_{e_2} s_{-e_2} \rangle, \quad x_5 = \langle s_0 s_{e_1} s_{-e_1} s_{e_2} \rangle$$

131 diamond

Spin-flip equations relates spin correlators: (total of 6 spin-flip eqs for 131, not all independent)

$$(A = \emptyset) \quad 0 = A_2 \left(4 + 4x_2 + 8x_3 \right) + A_4 \left(40 + 64x_2 + 128x_3 + 24x_4 \right) - 4B_1x_1 - B_3 \left(40x_1 + 24x_5 \right)$$

$$A_{2} = \frac{-15 + 16\cosh(4J) - \cosh(8J)}{48}$$

$$A_{4} = \frac{3 - 4\cosh(4J) + \cosh(8J)}{192}$$

$$B_{1} = \frac{8\sinh(4J) - \sinh(8J)}{12}$$

$$B_{3} = \frac{-2\sinh(4J) + \sinh(8J)}{48}$$

1. Relation: spin-flip equations, examples in 2D h=0

Spin correlators in the "131" diamond:

$$x_1 = \langle s_0 s_{e_1} \rangle, \quad x_2 = \langle s_{e_1} s_{-e_1} \rangle, \quad x_3 = \langle s_{e_1} s_{e_2} \rangle, \quad x_4 = \langle s_{e_1} s_{-e_1} s_{e_2} s_{-e_2} \rangle, \quad x_5 = \langle s_0 s_{e_1} s_{-e_1} s_{e_2} \rangle$$

131 diamond

Spin-flip equations relates spin correlators: (total of 6 spin-flip eqs for 131, not all independent)

$$(A = \emptyset) \quad 0 = A_2 \left(4 + 4x_2 + 8x_3 \right) + A_4 \left(40 + 64x_2 + 128x_3 + 24x_4 \right) - 4B_1x_1 - B_3 \left(40x_1 + 24x_5 \right)$$

Correlators x_4 and x_5 are not independent:

$$x_4 = \frac{-8(\cosh(2J) + \cosh(6J))x_1 + \sinh(2J)(-1 + 2x_2 + 4x_3) + \sinh(6J)(3 + 2x_2 + 4x_3)}{4\sinh^3(2J)}$$

$$x_5 = \frac{-(1 + 3\cosh(4J))x_1 + \sinh(4J)(1 + x_2 + 2x_3)}{2\sinh^2(2J)}$$

$$A_{2} = \frac{-15 + 16\cosh(4J) - \cosh(8J)}{48}$$

$$A_{4} = \frac{3 - 4\cosh(4J) + \cosh(8J)}{192}$$

$$B_{1} = \frac{8\sinh(4J) - \sinh(8J)}{12}$$

$$B_{3} = \frac{-2\sinh(4J) + \sinh(8J)}{48}$$

- 1. Relation: spin-flip equations
 - Linear equations
 - Equations between variables in a small subregion

1. Relation: spin-flip equations

	primite subsets	ind. spin-flip equations	ind. spin correlators
2D 131, h=0	6	2	3
2D 13531, h=0	569	549	19
2D 13531, h≠0	1127	1097	29
3D 15551, h=0	5214	4584	629

- Solve numerically
- Not the bottleneck of the computation

- 2. Positivity: several kinds
 - Reflection positivity
 - Square positivity (appears to be redundant)
 - Griffiths inequalities

2. Reflection Positivity

$$\langle \mathcal{O}^R \mathcal{O} \rangle \geq 0$$
, where $\mathcal{O} = \sum_{A \subset H} t^A \underline{s}_A$, $\mathcal{O}^R = \sum_{A \subset H} t^A \underline{s}_{R(A)}$

The three inequivalent reflection planes: $R_{v,c}(x) = x - \frac{2(v \cdot x - c)}{v^2}v$ $H = \{x \in \Lambda : v \cdot x \ge c\}$

2. Reflection Positivity

$$\langle \mathcal{O}^R \mathcal{O} \rangle \geq 0$$
,

$$\mathscr{O} = \sum_{A \subset H} t^A \underline{s}_A \,,$$

$$\langle \mathcal{O}^R \mathcal{O} \rangle \geq 0$$
, where $\mathcal{O} = \sum_{A \subset H} t^A \underline{s}_A$, $\mathcal{O}^R = \sum_{A \subset H} t^A \underline{s}_{R(A)}$

The three inequivalent reflection planes: $R_{v,c}(x) = x - \frac{2(v \cdot x - c)}{v^2}v$ $H = \{x \in \Lambda : v \cdot x \ge c\}$

$$R_{v,c}(x) = x - \frac{2(v \cdot x - c)}{v^2}$$

$$H = \{ x \in \Lambda : v \cdot x \ge c \}$$

 $(J \ge 0)$

2. Reflection Positivity

$$\langle \mathcal{O}^R \mathcal{O} \rangle \geq 0$$
, where $\mathcal{O} = \sum_{A \subset H} t^A \underline{s}_A$, $\mathcal{O}^R = \sum_{A \subset H} t^A \underline{s}_{R(A)}$

Equivalently, $\vec{t}^T M \vec{t} \ge 0$ with $M_{AA'} := \langle s_{R(A)} s_{A'} \rangle \iff M \ge 0$

2. Reflection Positivity, example 131 diamond

2. Reflection Positivity, example 131 diamond

2. Reflection Positivity, example 131 diamond

Invariant SDP: sufficient to impose positive semidefiniteness of matrices built from states that transform in each irrep of the symmetry group.

2. Reflection Positivity, example

$$x_1 = \langle s_0 s_{e_1} \rangle, \quad x_2 = \langle s_{e_1} s_{-e_1} \rangle, \quad x_3 = \langle s_{e_1} s_{e_2} \rangle, \quad x_4 = \langle s_{e_1} s_{-e_1} s_{e_2} s_{-e_2} \rangle, \quad x_5 = \langle s_0 s_{e_1} s_{-e_1} s_{e_2} \rangle$$

2. Reflection Positivity, example

$$x_1 = \langle s_0 s_{e_1} \rangle, \quad x_2 = \langle s_{e_1} s_{-e_1} \rangle, \quad x_3 = \langle s_{e_1} s_{e_2} \rangle, \quad x_4 = \langle s_{e_1} s_{-e_1} s_{e_2} s_{-e_2} \rangle, \quad x_5 = \langle s_0 s_{e_1} s_{-e_1} s_{e_2} \rangle$$

2. Griffith's inequalities (Positivity)

[Glimm-Jaffe]

$$\langle \underline{s}_A \rangle \ge 0 \tag{G_1}$$

$$\langle \underline{s}_{A} \underline{s}_{B} \rangle - \langle \underline{s}_{A} \rangle \langle \underline{s}_{B} \rangle \ge 0$$
 (G₂)

for finite subsets $A, B \subset \Lambda$.

2. Griffith's inequalities (Positivity)

[Glimm-Jaffe]

$$\langle \underline{s}_A \rangle \ge 0 \tag{G_1}$$

$$\langle \underline{s}_A \underline{s}_B \rangle - \langle \underline{s}_A \rangle \langle \underline{s}_B \rangle \ge 0$$
 (G_2)

for finite subsets $A, B \subset \Lambda$.

- True for ferromagnetic coupling $J \geq 0$.
- G_2 implies $\langle \underline{s}_A \rangle$ are monotonic as functions of J or h.
- G_2 are non-linear inequalities. Many of them are non-convex. Thus far, we have not been able to implement them in SDP in a useful way. More on this later.

SDP problem:

 Reflection positivity matrices, one for each irrep of symmetry group:

$$X^{(k)} = \sum_{A \subset \mathcal{D}} Y_A^{(k)} \langle \underline{s}_A \rangle \succeq 0, \ \forall k$$
 (e.g. k={even, odd} in previous slide)

• Plug-in numerical solution of spin-flip equations $\langle \underline{s}_A \rangle = \sum_I a_A^I \langle \underline{s}_I \rangle + c_A$, where $\langle \underline{s}_I \rangle$ are the independent variables, and so

$$\begin{split} X^{(k)} &= \sum_I W_I^{(k)} \langle \underline{s}_I \rangle + V^{(k)} \succeq 0, \, \forall k \\ \text{where } W_I^{(k)} &= \sum_A a_A^I Y_A^{(k)} \,, \, V^{(k)} = \sum_A c_A Y_A^{(k)} \end{split}$$

SDP problem:

 Reflection positivity matrices, one for each irrep of symmetry group:

$$X^{(k)} = \sum_{A \subset \mathcal{D}} Y_A^{(k)} \langle \underline{s}_A \rangle \succeq 0, \ \forall k$$
 (e.g. k={even, odd} in previous slide)

• Plug-in numerical solution of spin-flip equations $\langle \underline{s}_A \rangle = \sum_I a_A^I \langle \underline{s}_I \rangle + c_A$, where $\langle \underline{s}_I \rangle$ are the independent variables, and so

$$\begin{split} X^{(k)} &= \sum_I W_I^{(k)} \langle \underline{s}_I \rangle + V^{(k)} \succeq 0, \ \forall k \\ \text{where } W_I^{(k)} &= \sum_A a_A^I Y_A^{(k)} \ , \ V^{(k)} &= \sum_A c_A Y_A^{(k)} \end{split}$$

$$\begin{aligned} & \min_{y_I \in \mathbb{R}} \sum_I b^I y_I \\ & \text{subject to} \quad \sum_I a_A^I y_I + c_A \geq 0, \ \ \forall A \quad (G_1) \\ & \text{and} \quad \sum_I W_I^{(k)} y_I + V^{(k)} \geq 0, \ \ \forall k \quad (RP) \end{aligned}$$

Solve using MOSEK or SDPA-QD.

Did not impose G_2

Some numbers:

2D 13531 diamond h≠0

- 29 independent variables
- 8 positive semidefinite matrices (288²,224²,12²,4²,144²,112²,20²,12²)

3D 15551 domain h=0

- 629 independent variables
- 17 positive semidefinite matrices Largest matrix: 2400 × 2400
- Too big for SDP solver. Had to truncate matrices to 100×100

Some numbers:

2D 13531 diamond h≠0

- 29 independent variables
- 8 positive semidefinite matrices (288²,224²,12²,4²,144²,112²,20²,12²)

3D 15551 domain h=0

- 629 independent variables
- 17 positive semidefinite matrices Largest matrix: 2400 × 2400
- Too big for SDP solver. Had to truncate matrices to 100×100

Large scale separation in positive-semidefinite matrices $\sim 10^{10}$

- Effectively lose 10 digits of accuracy
- SDPA-QD for most precise results, and MOSEK for when ≤ 6 digits is enough (which is a much faster SDP solver).

Results

2D Ising, h=0

Dramatic improvement by increasing size of diamond!

2D Ising, spontaneous magnetization

- Only upper bound
- 1st Griffiths inequality plays a role, but appears to be not essential

2D Ising, h≠0

• 13531 diamond bootstrap

2D Ising

- exact lower bound
- upper bound exact
- 10⁴ sweeps MC error (est. with 1 sigma)
- 10⁶ sweeps MC error (est. with 1 sigma)

- 13531 diamond bootstrap
- MC on a 200×200 lattice, 10^6 Metropolis sweeps

2D Ising, h≠0 fixed

2D Ising, Griffiths 2nd inequality

• Orange circles: 2nd Griffiths inequality G_2 is violated ~ when bound looks non-monotonic.

G₂ inequalities

$$\langle \underline{s}_A \underline{s}_B \rangle - \langle \underline{s}_A \rangle \langle \underline{s}_B \rangle \ge 0$$

• Some can be phrased as positive-semidefinite matrix: Namely, those with $B = A^g$ for some $g \in G$ of the symmetry group G, so that $\langle \underline{s}_A \underline{s}_{Ag} \rangle - \langle \underline{s}_A \rangle^2 \geq 0$, or

$$\begin{pmatrix} 1 & \langle \underline{s}_A \rangle \\ \langle \underline{s}_A \rangle & \langle \underline{s}_A \underline{s}_{Ag} \rangle \end{pmatrix} \geq 0$$

But do not appear to improve bounds.

Not others, for example in the 2D 131 diamond

$$\langle s_{-e_2} s_0 s_{e_2} s_{e_1} \rangle - \langle s_0 s_{e_1} \rangle \langle s_{-e_2} s_{e_2} \rangle \ge 0, \quad \langle s_{e_2} \rangle - \langle s_{-e_1} s_{e_1} s_{e_2} \rangle \langle s_{-e_1} s_{e_1} \rangle \ge 0$$
 etc

Some are violated! So we do expect to improve our bounds.

• A naive relaxation did not improve bounds (didn't try too hard...)

3D Ising, h=0

- 151 diamond
- 1551 diamond
- 15551 diamond, with reflection positivity matrices truncated to 100×100
- MC on 100^3 lattice

Future Directions

- Improve the algorithm
 - Subset of spin configurations that are more important
 - Null state relations
- More inequalities
 - Incorporate G_2 inequalities (non-convex)
 - Simon-Lieb inequalities long-distance spin correlators

$$\langle s_x s_y \rangle \le \sum_{z \in B} \langle s_x s_z \rangle \langle s_z s_y \rangle$$

- Aizenman-Lebowitz inequality
- More!

Future Directions

- Theories with fermions
- Incorporate RG block-spin transformations (criticality)
- Systematic understanding of the convergence of bounds
- Gauge theories (see [Kruczenski talk] [Kazakov-Zheng] for pure YM)
- Study lattice defects
- Combine with the conformal bootstrap

•

2D Ising, h=0

