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Ising Model

At each lattice site , the variable  
(called “spin”) can take either of two values 


 


electrons, tiny magnets


A spin configuration of the lattice system is a 
particular assignment of spin up or down for 
each site.

x ∈ Λ sx

sx = { 1 "spin up" ↑
−1 "spin down" ↓

Physical system for intuition: magnets

sx
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Ising Model
Physical system for intuition: magnets

Partition function:





where the exponential is interpreted as the probability 
that the system is in that specific spin config

Z = ∑
spin

configs

exp [−
1
T

E ( spin
config)]

At each lattice site , the variable  
(called “spin”) can take either of two values 


 


electrons, tiny magnets


A spin configuration of the lattice system is a 
particular assignment of a spin value for each 
site.

x ∈ Λ sx

sx = { 1 "spin up" ↑
−1 "spin down" ↓



Ising Model
Physical system for intuition: magnets

For the Ising model, 





where  means  such that they are directly adjacent sites


• 2nd term — external magnetic field :  
spins want to point in the same direction as the external magnetic field 
(energetically favorable to do so)


• 1st term — nearest-neighbor interactions only:  
it’s energetically favorable for a spin to point along the same direction 
as its neighbor.  is the strength of this interaction.  

 ferromagnetic;  anti-ferromagnetic

E({sx}) = − J∑
⟨xy⟩

sxsy − h ∑
x∈Λ

sx

⟨xy⟩ x, y ∈ Λ

h

J
J > 0 J < 0
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Ising Model
Physical system for intuition: magnets

Ising:





(temperature T has been absorbed into J and h)


For a function  of the spins,


,


denotes the average value of .

Z = ∑
sx = ± 1
x ∈ Λ

eJ∑⟨xy⟩ sxsy + h∑x sx

f({sx})

⟨ f({sx})⟩ =
1
Z ∑

sx = ± 1
x ∈ Λ

f({sx}) eJ∑⟨xy⟩ sxsy + h∑x sx

f

sx



Ising Model — phase transition
Ising at h = 0

J
Jc
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Ising Model — phase transition
Ising at h = 0

J

Spontaneous magnetization

JcDiagnosis: 
average magnetization 
per site 
(order parameter)

⟨s0⟩h=0+ = 0 ⟨s0⟩h=0+ ≠ 0



Ising Model — phase diagram
2D Ising

J
Jc

h

⟨s0⟩h=0+ > 0

⟨s0⟩h=0− < 0



Ising Model — phase diagram
2D Ising

J
Jc

h

⟨s0⟩h=0+ > 0

⟨s0⟩h=0− < 0

Conformal bootstrap

See talks by [Poland] [van Rees]



Ising Model — summary
• 1D


- Exactly soluble

- No phase transition 

• 2D

- Exactly soluble for  only

- Exhibits a phase transition! 

• 3D

- No exact solution known today

- Exhibits a phase transition as well

h = 0

J
Jc

⟨s0⟩

⟨s0⟩h=0+ = [1 −
1

sinh4(2J) ]
1
8
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Ising model 
lattice bootstrap



Lattice Bootstrap — Ising Model
• Objects to be bootstrapped: spin correlation functions





Examples:


• 


•

⟨sA⟩ =
1
Z ∑

sx=±1, x∈Λ

sA eJ∑⟨xy⟩ sxsy+h∑x sx, sA ≡ ∏
x∈A

sx,

⟨s0se1
⟩

⟨s0s2e1
⟩



Lattice Bootstrap — Ising Model
1. Relation: spin-flip equations (from a change of variable)





Sounds trivial, but


sz → − sz

⟨sA⟩ = ζA⟨exp[ − J sz

d

∑
μ=1

(sz+eμ
+ sz−eμ

) − h sz]+J sz

d

∑
μ=1

(sz+eμ
+ sz−eμ

) + h sz]

sz



Lattice Bootstrap — Ising Model
1. Relation: spin-flip equations (from a change of variable)





Sounds trivial, but





sz → − sz

⟨sA⟩ = ζA⟨exp[ − 2J sz

d

∑
μ=1

(sz+eμ
+ sz−eμ

) − 2h sz + J sz

d

∑
μ=1

(sz+eμ
+ sz−eμ

) + h sz]

sz



Lattice Bootstrap — Ising Model
1. Relation: spin-flip equations (from a change of variable)





Sounds trivial, but


sz → − sz

⟨sA⟩ = ζA(z)⟨exp[ − 2J sz

d

∑
μ=1

(sz+eμ
+ sz−eμ

) − 2h sz]⟩

:= w ∈ {0, ± 2,⋯, ± d} finitely many termsζA(z) = {−1, if z ∈ A
1, otherwise

sz



Lattice Bootstrap — Ising Model
1. Relation: spin-flip equations (  here)





where  and  are some fixed coefficients ( ’s and ’s)


• Linear equations


• Equations between variables in a small region

sz = s0

0 = [−ζA(0) + cosh(2h)]⟨sA⟩ +
2d

∑
ℓ=0

[Aℓ cosh(2h) + Bℓ sinh(2h)]⟨sAwℓ⟩

−sinh(2h)⟨sAs0⟩ −
2d

∑
ℓ=0

[Aℓ sinh(2h) + Bℓ cosh(2h)]⟨sAs0wℓ⟩

Al Bl sinh(J) cosh(J)



Lattice Bootstrap — Ising Model
1. Relation: spin-flip equations, examples in 2D h=0

131 diamond
Spin correlators in the “131” diamond:



Lattice Bootstrap — Ising Model
1. Relation: spin-flip equations, examples in 2D h=0

x1 = ⟨s0se1
⟩, x2 = ⟨se1

s−e1
⟩, x3 = ⟨se1

se2
⟩, x4 = ⟨se1

s−e1
se2

s−e2
⟩, x5 = ⟨s0se1

s−e1
se2

⟩
131 diamond

Spin correlators in the “131” diamond:



Lattice Bootstrap — Ising Model
1. Relation: spin-flip equations, examples in 2D h=0

x1 = ⟨s0se1
⟩, x2 = ⟨se1

s−e1
⟩, x3 = ⟨se1

se2
⟩, x4 = ⟨se1

s−e1
se2

s−e2
⟩, x5 = ⟨s0se1

s−e1
se2

⟩

(A = ∅) 0 = A2 (4 + 4x2 + 8x3) + A4 (40 + 64x2 + 128x3 + 24x4) − 4B1x1 − B3 (40x1 + 24x5)

A2 =
−15 + 16 cosh(4J ) − cosh(8J )

48

A4 =
3 − 4 cosh(4J ) + cosh(8J )

192

B1 =
8 sinh(4J ) − sinh(8J )

12

B3 =
−2 sinh(4J ) + sinh(8J )

48

131 diamond
Spin correlators in the “131” diamond:

Spin-flip equations relates spin correlators: 

(total of 6 spin-flip eqs for 131, not all independent)



Lattice Bootstrap — Ising Model
1. Relation: spin-flip equations, examples in 2D h=0

x1 = ⟨s0se1
⟩, x2 = ⟨se1

s−e1
⟩, x3 = ⟨se1

se2
⟩, x4 = ⟨se1

s−e1
se2

s−e2
⟩, x5 = ⟨s0se1

s−e1
se2

⟩

(A = ∅) 0 = A2 (4 + 4x2 + 8x3) + A4 (40 + 64x2 + 128x3 + 24x4) − 4B1x1 − B3 (40x1 + 24x5)

A2 =
−15 + 16 cosh(4J ) − cosh(8J )

48

A4 =
3 − 4 cosh(4J ) + cosh(8J )

192

B1 =
8 sinh(4J ) − sinh(8J )

12

B3 =
−2 sinh(4J ) + sinh(8J )

48

x4 =
−8(cosh(2J) + cosh(6J))x1 + sinh(2J)(−1 + 2x2 + 4x3) + sinh(6J)(3 + 2x2 + 4x3)

4 sinh3(2J)

x5 =
−(1 + 3 cosh(4J))x1 + sinh(4J)(1 + x2 + 2x3)

2 sinh2(2J)

131 diamond
Spin correlators in the “131” diamond:

Spin-flip equations relates spin correlators: 

(total of 6 spin-flip eqs for 131, not all independent)

Correlators  and  are not independent:x4 x5



Lattice Bootstrap — Ising Model
1. Relation: spin-flip equations


• Linear equations


• Equations between variables in a small subregion

sz

131 diamond 13531 diamond

15551 domain



Lattice Bootstrap — Ising Model
1. Relation: spin-flip equations

primite subsets ind. spin-flip equations  ind. spin correlators

2D 131,     h=0 6 2 3

2D 13531, h=0 569 549 19

2D 13531, h≠0 1127 1097 29

3D 15551, h=0 5214 4584 629

• Solve numerically

• Not the bottleneck of the computation



Lattice Bootstrap — Ising Model
2. Positivity: several kinds


• Reflection positivity


• Square positivity (appears to be redundant)


• Griffiths inequalities



Lattice Bootstrap — Ising Model
2. Reflection Positivity





The three inequivalent reflection planes: 

⟨𝒪R 𝒪⟩ ≥ 0 , where 𝒪 = ∑
A⊂H

tAsA , 𝒪R = ∑
A⊂H

tAsR(A)

H = {x ∈ Λ : v ⋅ x ≥ c}Rv,c(x) = x −
2(v ⋅ x − c)

v2
v
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2. Reflection Positivity





The three inequivalent reflection planes: 

⟨𝒪R 𝒪⟩ ≥ 0 , where 𝒪 = ∑
A⊂H

tAsA , 𝒪R = ∑
A⊂H

tAsR(A)

Here H is half of the lattice defined by H = {x 2 ⇤ : v · x � c}, for a fixed primitive lattice
vector v and a constant c, and R is the mirror reflection in the direction of v, defined by

Rv,c(x) = x�
2(v · x� c)

v2
v. (1.8)

The sum in (1.7) is taken over a finite set of subsets A, with real coefficients tA. Importantly,
v and c must be chosen such that R is an automorphism of the lattice ⇤, which restricts
v2 2 {1, 2} and c 2

v
2

2 Z.4 Up to lattice rotations and shifts, there are three inequivalent
choices:

v = e1, c = 0 (Re1,0)

v = e1, c =
1

2
(R

e1,
1
2
)

v = e1 + e2, c = 0 (Re1+e2,0)

(1.9)

(1.6) is derived by rewriting the correlator in question as a sum of squares. Note that in the
case of half-integer c, such as R

e1,
1
2

of (1.9), the derivation of (1.6) requires the assumption
of ferromagnetic coupling J � 0 (see section 3.1).

e2

e1

A

Re1,0 R
e1,

1
2

Re1+e2,0

Re1,0(A)

Figure 2: Three different types of reflection positivity conditions on the square lattice.

The second type of constraints is square positivity, of the form
⌦
O

2
↵
� 0, (1.10)

where
O =

X

A⇢⇤

tAs
A
, tA 2 R. (1.11)

The third type of constaints are Griffiths inequalities, known to hold in the ferromagnetic
Ising model (J � 0) with non-negative external magnetic field (h � 0) [27].5 They are of

4Given a primitive v, Rv,c(x) is a lattice vector if and only if 2(v·x�c)
v2 2 Z. As v · x can take every integer

value, v2 must be either 1 or 2.
5A variety of other Ising inequalities that constrain the spin correlators are known [27,28] but their roles

will not be explored in this paper.

4

H = {x ∈ Λ : v ⋅ x ≥ c}Rv,c(x) = x −
2(v ⋅ x − c)

v2
v

(J ≥ 0)



Lattice Bootstrap — Ising Model
2. Reflection Positivity





Equivalently,  with       

⟨𝒪R 𝒪⟩ ≥ 0 , where 𝒪 = ∑
A⊂H

tAsA , 𝒪R = ∑
A⊂H

tAsR(A)

⃗t TM ⃗t ≥ 0 MAA′ 
:= ⟨sR(A)sA′ 

⟩ ⇔ M ⪰ 0



Lattice Bootstrap — Ising Model
2. Reflection Positivity, example 131 diamond



Lattice Bootstrap — Ising Model
2. Reflection Positivity, example 131 diamond

ℤ2



Lattice Bootstrap — Ising Model
2. Reflection Positivity, example 131 diamond

even : 1, s0se1
, se2

s−e2
,

s0se2
+ s0s−e2

2
,

se1
se2

+ se1
s−e2

2
, s0se1

se2
s−e2

;

odd :
s0se2

− s0s−e2

2
,

se1
se2

− se1
s−e2

2
.

ℤ2

Invariant SDP: sufficient to impose positive semidefiniteness of matrices 
built from states that transform in each irrep of the symmetry group.



Lattice Bootstrap — Ising Model
2. Reflection Positivity, example

1 x1 x2 x1 x3 x5

x1 x2 x5 x3 x5 x4

x2 x5 1 x1 x3 x1

x1 x3 x1
1 + x2

2
x1 + x5

2 x3

x3 x5 x3
x1 + x5

2
x2 + x4

2 x5

x5 x4 x1 x3 x5 x2

⪰ 0

+ +

+

+

x1 = ⟨s0se1
⟩, x2 = ⟨se1

s−e1
⟩, x3 = ⟨se1

se2
⟩, x4 = ⟨se1

s−e1
se2

s−e2
⟩, x5 = ⟨s0se1

s−e1
se2

⟩

sA

sR(A)



Lattice Bootstrap — Ising Model
2. Reflection Positivity, example

1 x1 x2 x1 x3 x5

x1 x2 x5 x3 x5 x4

x2 x5 1 x1 x3 x1

x1 x3 x1
1 + x2

2
x1+x5

2 x3

x3 x5 x3
x1+x5

2
x2+x4

2 x5

x5 x4 x1 x3 x5 x2

⪰ 0

+ +

+

+

x1 = ⟨s0se1
⟩, x2 = ⟨se1

s−e1
⟩, x3 = ⟨se1

se2
⟩, x4 = ⟨se1

s−e1
se2

s−e2
⟩, x5 = ⟨s0se1

s−e1
se2

⟩



Lattice Bootstrap — Ising Model
2. Griffith’s inequalities (Positivity)





for finite subsets . 

⟨sA⟩ ≥ 0 (G1)
⟨sAsB⟩ − ⟨sA⟩⟨sB⟩ ≥ 0 (G2)

A, B ⊂ Λ

[Glimm-Jaffe]



Lattice Bootstrap — Ising Model
2. Griffith’s inequalities (Positivity)





for finite subsets . 


• True for ferromagnetic coupling .


•   implies  are monotonic as functions of  or .


•  are non-linear inequalities. Many of them are non-convex.  
Thus far, we have not been able to implement them in SDP in a useful way. More on this 
later.

⟨sA⟩ ≥ 0 (G1)
⟨sAsB⟩ − ⟨sA⟩⟨sB⟩ ≥ 0 (G2)

A, B ⊂ Λ

J ≥ 0

G2 ⟨sA⟩ J h

G2

[Glimm-Jaffe]



Lattice Bootstrap — Ising Model
SDP problem:

• Reflection positivity matrices, one for each 

irrep of symmetry group:


•   
(e.g. k={even, odd} in previous slide)


• Plug-in numerical solution of spin-flip 
equations , where 

 are the independent variables, and so


• 


• where  , 

X(k) = ∑A⊂𝒟 Y(k)
A ⟨sA⟩ ⪰ 0, ∀k

⟨sA⟩ = ∑I aI
A⟨sI⟩ + cA

⟨sI⟩

X(k) = ∑I W(k)
I ⟨sI⟩ + V(k) ⪰ 0, ∀k

W(k)
I = ∑A aI

AY(k)
A V(k) = ∑A cAY(k)

A



Lattice Bootstrap — Ising Model
SDP problem:

• Reflection positivity matrices, one for each 

irrep of symmetry group:


•   
(e.g. k={even, odd} in previous slide)


• Plug-in numerical solution of spin-flip 
equations , where 

 are the independent variables, and so
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• where  , 

X(k) = ∑A⊂𝒟 Y(k)
A ⟨sA⟩ ⪰ 0, ∀k

⟨sA⟩ = ∑I aI
A⟨sI⟩ + cA

⟨sI⟩

X(k) = ∑I W(k)
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Solve using MOSEK or SDPA-QD.


Did not impose 

min
yI∈ℝ ∑

I

bIyI

subject to  ∑
I

aI
AyI + cA ≥ 0, ∀A (G1)

and  ∑
I

W(k)
I yI + V(k) ⪰ 0, ∀k (RP)

G2



Lattice Bootstrap — Ising Model
Some numbers:


2D 13531 diamond h≠0


• 29 independent variables


• 8 positive semidefinite matrices 
(2882,2242,122,42,1442,1122,202,122)

3D 15551 domain h=0


• 629 independent variables


• 17 positive semidefinite matrices 
Largest matrix: 


• Too big for SDP solver. Had to 
truncate matrices to 

2400 × 2400

100 × 100



Lattice Bootstrap — Ising Model
Some numbers:


2D 13531 diamond h≠0


• 29 independent variables


• 8 positive semidefinite matrices 
(2882,2242,122,42,1442,1122,202,122)

3D 15551 domain h=0


• 629 independent variables


• 17 positive semidefinite matrices 
Largest matrix: 


• Too big for SDP solver. Had to 
truncate matrices to 

2400 × 2400

100 × 100

Large scale separation in positive-semidefinite matrices 

• Effectively lose 10 digits of accuracy

• SDPA-QD for most precise results, and MOSEK for when ≤ 6 digits is 

enough (which is a much faster SDP solver).

∼ 1010



Results



2D Ising, h=0

0.2 0.4 0.6 0.8 J

0.2

0.4

0.6

0.8

1.0

�s0 se1 �

131 diamond

13531 diamond

data shown for:

• Dramatic improvement by increasing size of diamond!

analytical result— 



2D Ising, spontaneous magnetization

X X X X X X X X X X X X X X

X

X

X

X

X

X

X

X

X
X

X X X X X X X X X X X X X X X X X

I I I I I I I I I I

I

I

I

I

I

I
I

I
I

I
I I I I I I I I I I I I I I I I I I I I I

O O O O O O O O O O O O O O
O

O

O

O

O

O

O

O

O
O

O O O O O O O O O O O O O O O O O

O O O O
O

O
O

O
O

O

O

O

O

O

O

O
O

O
O

O
O O O O O O O O O O O O O O O O O O O O O

O

Jc
0.3 0.4 0.5 0.6 J

0.2

0.4

0.6

0.8

1.0

�s0�

X 13531+G1
I 131+G1
O 13531
O 131

• Only upper bound

• 1st Griffiths inequality plays a role, but appears to be not essential



2D Ising, h 0≠

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

• 13531 diamond bootstrap



2D Ising
at J = Jc

• 13531 diamond bootstrap

• MC on a  lattice,  Metropolis sweeps200 × 200 106

0.2 0.3 0.4 0.5 0.6 0.7 0.8
J

10-7

10-6

10-5

10-4

0.001

0.010

0.100

Δ〈s0 se1
〉

exact - lower bound

upper bound - exact

104 sweeps MC error (est. with 1 sigma)

106 sweeps MC error (est. with 1 sigma)

0.2 0.3 0.4 0.5 0.6 0.7 0.8
J

10-7

10-6

10-5

10-4

0.001

0.010

0.100

Δ〈s0 se1
〉

exact - lower bound

upper bound - exact

104 sweeps MC error (est. with 1 sigma)

106 sweeps MC error (est. with 1 sigma)



2D Ising, h 0 fixed≠

0.2 0.3 0.4 0.5 0.6 0.7 0.8
J

0.2

0.4

0.6

0.8

1.0

〈s0 se1
〉

h=0.03

0.2 0.3 0.4 0.5 0.6 0.7 0.8
J0.0

0.2

0.4

0.6

0.8

1.0

〈s0 se1
〉

h=0.3

0.2 0.3 0.4 0.5 0.6 0.7 0.8
J

0.2

0.4

0.6

0.8

1.0

〈s0〉

h=0.03

0.2 0.3 0.4 0.5 0.6 0.7 0.8
J

0.2

0.4

0.6

0.8

1.0

〈s0〉

h=0.3



2D Ising, Griffiths 2nd inequality

O O O O O O O O O O O
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• Orange circles: 2nd Griffiths inequality  is violated ~ when bound looks 
non-monotonic.
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• Some can be phrased as positive-semidefinite matrix: 
Namely, those with  for some  of the symmetry group , so that 

, or





But do not appear to improve bounds.


• Not others, for example in the 2D 131 diamond





Some are violated! So we do expect to improve our bounds.


• A naive relaxation did not improve bounds (didn’t try too hard…)

⟨sAsB⟩ − ⟨sA⟩⟨sB⟩ ≥ 0

B = Ag g ∈ G G
⟨sAsAg⟩ − ⟨sA⟩2 ≥ 0

(
1 ⟨sA⟩

⟨sA⟩ ⟨sAsAg⟩) ⪰ 0

⟨s−e2
s0se2

se1
⟩ − ⟨s0se1

⟩⟨s−e2
se2

⟩ ≥ 0, ⟨se2
⟩ − ⟨s−e1

se1
se2

⟩⟨s−e1
se1

⟩ ≥ 0 etc.



3D Ising, h=0
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• MC on  lattice

100 × 100

1003



Future Directions 
• Improve the algorithm


- Subset of spin configurations that are more important

- Null state relations


• More inequalities


- Incorporate  inequalities (non-convex)

- Simon-Lieb inequalities - long-distance spin correlators





- Aizenman-Lebowitz inequality

- More!

G2

⟨sx sy⟩ ≤ ∑
z∈B

⟨sx sz⟩⟨sz sy⟩
sx sy



Future Directions 
• Theories with fermions

• Incorporate RG block-spin transformations (criticality)

• Systematic understanding of the convergence of bounds

• Gauge theories (see [Kruczenski talk] [Kazakov-Zheng] for pure YM)

• Study lattice defects

• Combine with the conformal bootstrap

• … 





2D Ising, h=0
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